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PREFACE

Part of the RAND research program consists of basic

supporting studies in mathematics. This Memorandum is the second

in a series dealing with a number of rigorous aspects of the highly

useful mathematical theory known as invariant imbedding. In this

theory invariance principles are applied to handle a variety of conceptual

and computational aspects of mathematical physics.

The research presented here was sponsored by the Advanced

Research Projects Agency.



SUMMARY

The theory of invariant imbedding leads to new types of

difference approximations to partial differential equations. To

illustrate the type of analysis required to establish the convergence

of the solution of one to the solution of the otherwe consider the

difference approximation uCx + A, y) = u(x, y + u (x, y) A) , and

the limiting equation u = uu .x y
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EXISTENCE AND UNIQUENESS THEOREMS IN INVARIANT
IMBEDDING - II: CONVERGENCE OF A NEW

DIFFERENCE ALGORITHM

1. INTRODUCTION

In the first paper of this series, we indicated how a mathe-

matical model of a "transport process;' constructed according to the

theory of invariant imbedding, led to an interesting system of non-

linear ordinary differential equations of Riccati type, and we showed

how a new type of conservation principle could be used to establish

existence of solutions.

If interactions between particles are admitted, in addition to

the already existing interaction between particles and the medium,

then invariant imbedding techniques lead to partial differential

equations of hyperbolic type. The stratification used in the derivation

of these equations, following imbedding procedures, automatically

produces a set of approximating difference equations of novel form,

quite different from the usual equations of this type; see C 1J, where

other references may be found.

Since the discussion of the equations arising from invariant

imbedding is rather complex, we shall illustrate the method first

with an analogous treatment of the equation

U + uu a 0 _ -< y < W I - of
(1.(0) y y g>0,

u(O, y) * g~y),
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an equation of some interest in itself. We shall consider an

approximating difference equation

(1.2) u(y, x + 4) = u(y-uy, x), x)

x 0, A, 2A, ... , - <y <i0, an equation which we know yields

excellent numerical results; [2], [3].. For x f n 6, u(y, x) is

defined by linear interpolation.

Equation (1. 1) is an exceedingly useful nonlinear partial

differential equation, since it possesses an explicit solution (in

implicit form, u = g(x + uy) that exhibits a shock phenomenon.

Hence, it is a very handy test of proposed numerical procedures.

Looking at Eqs. (1. 1) and (1. 2 there are several questions

we can ask:

(1.3) a. As A - 0, does the solution of (1. 2) approach

the solution of (1. 1), assuming that we have

already established the existence of a unique

solution of (1. 1) ?

b. Can we use (1. 2) to establish the existence of

a solution of (1. 1) ?

c. Let A - 0 through a sequence (a/2n) and call

the function obtained from (1. 2), with A s a/2 n ,

Un (X, y). Does the sequence (un(x, y) ) converge,

independently of the existence of solutions of (1. 1) ?
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These questions are of computational significance as well

as analytic interest. We shall discuss (a) and (c) here, and reserve

a discussion of (b) for a later paper devoted to the more complex

equations associated with transport processes.

In passing, let us refer the reader to F8] where the problem

of obtaining higher order approximations of the general form of (1. 2)

is briefly discussed.

2. PRELIMINARIES

Let us introduce the following notation:

(2 ) Un(y) = u (n 6, y, U' ( y ) -- -(n A, y),n~ay

and the norms

(2. 2) u = Hu n (y)I I max Iu n (y)n y n

uI = Jju'n (y)jj = max Iu'(y)I,n y n

= maxlg(y)I.Cl y

We assume that g(y) is continuous for all y, and that c1 < .

The recurrence relation of (1. 2) assumes the form

(2.3) un+I(Y) = Un(y-un(y)A), n = 0, 1, 2,

uo(Y) = g(y). This is a difference equation which is more closely

related to the functional equation studied by Myskis r4 ] than are the
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conventional differential equations whose study was initiated by

Courant, Friedrichs and Lewy; see [5J for further references.

Differentiating with respect to y, we have

(2.4) u' (y) = u' (y-au (y)) (1-AU(y)).
n+ 1 n n()) n

Upon taking absolute values we are led to the following inequality

between norms:

(2. 5) ut  < u' (I + au'),
n+1- n n

a Riccati difference inequality.

For our further purposes, we require the following simple result.

Lemma. Let u n I be a sequence of nonnegative

numbers satisfying the relation

(2.6) u n+ < ca +un(l+ 2c +cAu n), n a 0, 1,

Then if 6 is sufficiently small, viz.,

I
(2.7) cnA <1 ul~0

it follows that

(2.8) u< [ 1 A]-1

n - 1+ u0 n -1
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Proof. Let (v n be defined by the equation
n

(2.9) v 1  cA+ v n(1 + 2cA + cAv) , v0 M u 0

It is clear that vn+ >v and v > u for n O, 1,2 ....n - n n - n

Then
(1+v)

Vn+ 1 -v n n

(2. 10) CA A (+ < cA.
V + vn V + vn+ I  Vn+ 1

Hence

n-I vi+1I 1 c
(2. 11) 1 j% (1 + ) (1 1 ) 1+ 1 +v -< cn,

a result which implies (2. 8).

Returning to (2. 5), we see that (u n ) satisfies (2. 6), with

C a 1, whence

(2.12) u ' n A -1
n + l u 0

provided that n A< 1I/(1+ u).

Keeping the x-interval small enough, n a < a < 1, we obtain

a bound on u' which is independent of n and A.
n

3. PROOF OF CONVERGENCE TO KNOWN SOLUTION

Let us now turn to the discussion of the convergence of the

solution of (1. 2) under the hypothesis that we have already established

the existence of a solution in an initial x-lnterval 0 < x < a, a matter
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easily accomplished in this case and indeed explicitly by means of

the implicit relation mentioned in Sec. 1.

Let v(x, t) represent this solution which possesses

continuous derivatives in the region 0 <x <a, -<y < , if a

is small. Then we have the equation

(3. 1) v(x + 6,y) = v(x, y - Av(x, y)) +o(),

uniformly in this region. Set

(3.2) un (y) = u(nL, y), v n(y) = v(nA , y).

Then (3. 1) and (2. 3) yield the relation

(3. 3) U n+1 (y) - Vn+1 (y) - un(Y - aun(Y)) - Vn ( y - A n(Y)) + o )

= Un (y - AV (y)) - Vn(Y- A V(y))

-u (y - AVn(y)) + un(Y - au (Y)) +o(A).

Introduce the sequence of constants tr }, where

(3.4) rn = max lun(Y) Vn(Y)n y

Then (3. 3) yields

u(n+ I(y)- Vn+ I(Y)l < I un(Y- AVn(y)) - Vn(Y - A Vn(y))

(3.5) + Iun(Y- Vn(Y))-un(Y - aun(y))

+ oW,
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or

rn < rn+ r u l + E6

n+1 n n n
(3.6)

<r (1 + C )+EA

(where c -0 as A -0), because of the uniform bound on u' estab-
n

lished in Sec. 2 above. It is easy to show inductively that this implies

clnA- cIa
(3.7) r < '_ (e 1-1) < c(e -1),

n-c 1  c

since n A <a. It follows that r -0 as 4 -. 0, and thus that- n

(3.8) lim(u(x,y)-v(x,y)) =0, 0<x<a, 0<y<a.

5-0

Hence, if a solution of the presented type exists, the sequence

defined by (2. 3) converges to it. Furthermore, the foregoing

establishes the uniqueness of such a solution.

4. PROOF OF CONVERGENCE OF DISCRETE SEQUENCE

Let us now turn to a demonstration of the convergence of

the sequence tun(Y) ) in the case where we do not presuppose the

existence of a solution of the partial differential equation. Let

a > 0, and choose successively = a, a/2, a/4, ..... Let

u(x, y) be an approximating function determined by a particular L

in this sequence and let Ci(x, y) be the corresponding function for

6/2.



As before, we let

(4. 1) u n(y) -u(n6, y) 0(y) =dn 6, y).

Now let us compare these two functions. We have

(4.2) u n+ 1(Y) 2U(y -6u (y))

and,using (2. 3) twice,

n 2n

where

(4.4) y y-A (

Since y' y+ O(A), we have

using the uniform boundedness of 0 and J5y as shown above.

Furthermore,

(4.6) i(n +!)L, Y) z d (y -- 0(y)) z = () ()

Hence

2 n
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where the 0-term is uniform in x, y, and A.

Equations (4. 7) and (4. 2) enable us to compare the functions

u and 0 at x = 0, A, 2A, .... .We shall prove that there exist

positive numbers a and k such that

(4.8) max iu (Y) - n(Y)I <knA2

y

for nA = O, A, ... , a. Proceeding inductively, suppose that it

holds for n. Using (4. 2) and (4. 7), we have

(4.9) lUn (y) - an (y) I< I un(Y - Lunly)) - n(y - 6 Un(Y))l

+ Iin,(y - AUn(y)) - n(y - 5 11n(y))

+ l2
+ c IA2

2 2
<kn2 + c 1

+ in(y - 6un(Y)) - fi(y - (y)) I

< knA2 + r142+ c2 Au (Y)- i (y)I2-n n

<knA2 +c 1 A2+ c2 A(knA 2).

Since n A <a, we can write (4. 9) as

(4.10) 1Un+I(y) - 5n+(y)I < knA2 + c 1A2+ c 2 A(kaA).

Hence if k and a are chosen so that
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(4. 11) ct + c 2 ka < k,

which means c 2 a < I, k> c the induction is complete.

Since u(x, y) and u(x, y) have been defined by linear

interpolation for x not a lattice point, we have

(4.12) ma), u(x,y)-hu(x,y) <c 3 A, 0<x< a.

y

If we let u r(x, y) denote the approximating function corresponding

to A = a/ 2 r, r 1, 2, ... , we obtain from (4. 12) the estimate

n c3a c3a
(4. 13) rE Ur+ (x, y)-Ur(x, y)r Z r+ I - m

rzn ~1r r~n 2 2

from which we deduce that

(4. 14) lim u (x,y) = u(x, y)
n-co n

exists uniformly for 0< x <a, -0 <y <

5. GENERALIZED SOLUTIONS

In the case of the general equations of invariant imbedding

r6 ], we are interested in establishing the limiting behavior of

equations obtained from an infinitesimal stratification of a medium.

The procedure we have used above enables us to define a "generalized

solution" in a new sense, an idea already put forth in r7 ., in

connection with the application of dynamic programming to the

calculus of variations.
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In subsequent papers we shall discuss the utility of these

new difference schemes in connection with establishing the existence

of a solution of the corresponding hyperbolic partial differential

equations of invariant imbedding from first principles.
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